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Abstract: The forecasts of local severe storms (LSS) are highly dependent on how well the
pre-convection environment is characterized in the numerical weather prediction (NWP) model
analysis. The usefulness of the forecasts is highly dependent on how frequently the forecast is
updated. Therefore, the data latency is critical for assimilation into regional NWP models for it to be
able to assimilate more data within the data cut-off window. These low latency data can be obtained
through direct broadcast sites and direct receiving systems. Observing system experiments (OSE)
were performed to study the impact of data latency on the LSS forecasts. The experiments assimilated
all existing observations including conventional data (from the global telecommunication system,
GTS) and satellite sounder radiance data (AMSU-A (The Advanced Microwave Sounding Unit-A),
ATMS (Advanced Technology Microwave Sounder), CrIS (Cross-track Infrared Sounder), and IASI
(Infrared Atmospheric Sounding Interferometer)). They were carried out in a nested domain with
a horizontal resolution of 9 km and 3 km in the weather research and forecasting (WRF) model.
The forecast quality scores of the LSS precipitation forecasts were calculated and compared with
different data cut-off widows to evaluate the impact of data latency. The results showed that low
latency can lead to an improved and positive impact on precipitation and other forecasts, which
indicates the potential application of LEO direct broadcast (DB) data in a high-resolution regional
NWP for LSS forecasts.

Keywords: data latency; satellite data assimilation; local severe storm; regional numerical
weather prediction

1. Introduction

The advanced infrared (IR) and microwave (MW) sounders [1] onboard the current polar orbiting
satellites (i.e., Joint Polar Satellite System (JPSS) series, Metop series, and FY-3 series) are equipped with
atmospheric sounding capability in the pre-convection environment. This is important for improving
high impact weather (HIW) event forecasts through assimilating the observations into numerical
weather prediction (NWP) models [2–4]. The usefulness of the forecast is dependent on how frequently
the forecast is updated. The importance of data latency was discussed and indicated that the improved
data latency, more frequent data refresh, and enhanced data coverage from satellites facilitate more rapid
updates to regional and mesoscale weather forecast models [5]. For example, the Rapid Refresh (RAP)
is the continental-scale National Oceanic and Atmospheric Administration (NOAA) hourly-updated
assimilation/modeling system that is operational at the National Centers for Environmental Prediction
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(NCEP). RAP is complemented by the higher-resolution, 3 km high-resolution rapid refresh (HRRR)
model [6]. The RAP/HRRR provides hourly updated regional forecasts for high impact weather (HIW)
events and the low latency observations are important for timely ingesting into the model. These low
latency data from polar orbiting satellites can be obtained through direct broadcast (DB) sites [7].

The new generation of geostationary satellites such as the FengYun-4 (FY4) series [8], Geostationary
Operational Environmental Satellite (GOES-R series) [9,10], and Himarari-8/-9 [11], with high spatial
and temporal resolutions are capable of monitoring moisture changes in pre-convection. In addition,
low latency can be obtained by receiving the geostationary rebroadcast (GRB) Level 1B (L1B) data.
For example, the GOES-16 Advanced Baseline Imager (ABI) observes the full disk every 10 min, the
Contiguous U.S. (CONUS) every five minutes, and a mesoscale domain every one minute, however,
the current GOES-R series only has limited sounding capability in the pre-convection environment,
especially with respect to monitoring vertical profiles.

Assimilating the low latency data from low earth orbit (LEO) and geostationary (GEO) into high
resolution regional NWP models demonstrates a process for improving rapidly changing weather
forecasts. Impact studies have been conducted through observing system experiments (OSEs) on the
assimilation of radiances in regional NWP models. The focus has been on the impact of latency from
polar orbiting satellite sounder data due to the current limited sounding capability from GEO orbit,
as above-mentioned. In general, there is a trade-off between the number of observations and latency.
Low latency ensures that observations are closer to the model analysis time, which is beneficial to NWP,
but may result in fewer observations available for the model. In this study, all available observations
including conventional data and satellite data were tested within different data latency schemes in
the regional NWP model for LSS case simulation. The equitable threat score (ETS)/false alarm rate
(FAR)/probability of detection (POD) scores of the LSS precipitation forecasts were calculated and
compared with different data cut-off widows to evaluate the impact of data latency.

The rest of this article is organized as follows. Section 2 describes the datasets and methodologies
used, Section 3 describes the experimental design, Section 4 provides the impact analysis on LSS
forecasts, and the conclusions are summarized in Section 5.

2. Methodologies and Data

2.1. Data Latency

The current polar orbiting satellites such as from Suomi-NPP, JPSS, and Metop-A/B have
atmospheric sounding capability in the pre-convection environment and low latency can be obtained
through DB sites over the CONUS and adjacent regions. DB is the most rapid way to obtain the
satellite observations from the sensor to the ground processing system. According to the NOAA
Space Platform Requirements Working Group (SPRWG), which represents user needs, data latency is
defined as the time it takes for the sensor to make the observation until the time the observation or
product is available to the primary NOAA users (e.g., National Weather Service (NWS) forecasters or
NCEP), so making the observation or product available to NOAA users must therefore include the
data processing time. The processing time is dependent on the observation or product and can be a
substantial fraction of the total latency [12]. For example, when converting the satellite observations
to the standard BUFR (Binary Universal Form for the Representation of meteorological data) format
or to the retrieval products for NWP models, satellite data latency can range from minutes to hours.
This data latency directly affects the data assimilation and the NWP models.

In this study, the satellite data latency impacts were tested in an LSS study in regional NWP.
To increase the latency impacts on the forecast results, the latency time was set as follows: 3-h, 2-h, 1-h,
and no latency. A three-dimensional variational data assimilation (3Dvar) method was used for all
of the experiments, with a 6-h assimilation window at the analysis time. Therefore, the 3-h latency
represents the data starting at 3-h ahead of the analysis time to the analysis time; the 2-h latency
represents the data starting at 3-h ahead of the analysis time to 1-h after the analysis time; the 1-h
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latency represents the data starting at 3-h ahead of the analysis time to 2-h after the analysis time; and
no latency represents the data starting at 3-h ahead of the analysis time to 3-h after the analysis time.
The 3-h latency was the largest latency with the smallest amount of satellite data, and the no latency
condition provided the largest amount of satellite data during the 6-h assimilation window. The no
latency condition is the ideal condition since it provides the most information at the time of analysis.

2.2. Satellite Sounder Observations Used in OSE (Binary Universal Form for the Representation of
Meteorological Data) Impact Studies

Based on the required latency conditions of 3-h, 2-h, 1-h, and no latency, the original 6-hourly
observations for both the conventional data and satellite observations were divided into every 3-h, 4-h,
and 5-h. The 3-h data translate to a 3-h latency, 4-h data translate to a 2-h latency, and the 5-h data
translate to a 1-h latency (Table 1). If all of the 6-hourly data are used, then there is no latency, which is
the best possible condition because it provides all of the information from the observation data in the
assimilation window. For example, the data distribution of the Advanced Microwave Sounder Unit
(AMSU)-A onboard Metop-B is shown in Figure 1, with an assimilation time of 1800 UTC on 23 June
2018. There is an additional granule of data from the 2-h latency that can be used in our domain and
compared to the data from the 3-h latency. It indicates that the observation time of this extra granule
of data occurs between the analysis time and 1-h post-analysis. These observations are not available
for the 3-h latency experiment, but they can be assimilated for the 2-h latency experiment. Figure 2
provides the data distribution for Channel 96 of the Cross-track Infrared Sounder (CrIS) for both the 2-h
and 1-h latency. In the 2-h latency, there are only a few observations covered between 90◦W and 70◦W
longitude. In the 1-h latency, the data coverage expands from 120◦W to 70◦W longitude. There are
more observations than can be used in the model domain for the 1-h latency, therefore, the assimilation
of the extra observations would further affect the forecast results.

Table 1. The available data hours and data latency.

Latency Time Data Hours Available Time

3-h data latency 3-h data 1500 UTC 23 to 1800 UTC 23 June

2-h data latency 4-h data 1500 UTC 23 to 1900 UTC 23 June

1-h data latency 5-h data 1500 UTC 23 to 2000 UTC 23 June

No data latency 6-h data 1500 UTC 23 to 2100 UTC 23 June
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Figure 2. Channel 96 of CrIS data coverage for the 2-h latency and 1-h latency at 1800 UTC 23 June, 2018.

Observations from selected channels of AMSU-A, Advanced Technology Microwave Sounder
(ATMS), CrIS, and Infrared Atmospheric Sounding Interferometer (IASI) [1] are listed in Table 2,
showing the four different data latency experiments at 1800 UTC on 23 June 2018. The increasing rate
of observations between the 3-h latency and no latency conditions were calculated and are shown in
the last column of Table 2. The observations of AMSU-A onboard NOAA-15, NOAA-18, Metop-A, and
IASI onboard Metop-A were consistent across the four different latency times, which indicates that
there were no differences for these channels in the data coverage in our domain. The observations
from Channel 6 of AMSU-A onboard Metop-B and Channel 110 of IASI onboard Metop-B increased
approximately 10% from the 3-h latency to the no latency condition. The observations of ATMS and
CrIS onboard Suomi-NPP showed an increase of greater than 50%. For AMSU-A onboard NOAA-19,
there was no data coverage in the domain from the 3-h latency. The AMSU-A onboard NOAA-19
data were available since 2-h latency, so the increasing rate of it was 100%. In general, there were
differences in the data coverage from the 3-h latency to 2-h latency and from the 2-h latency to 1-h
latency. The difference in data coverage for the selected channels between the 1-h latency and no latency
was marginally small. However, the different data coverage for other channels and conventional data
together affected the forecast results of the 1-h latency and no latency experiments, respectively.

Table 2. The data coverage increasing rate at 1800 UTC 23 June, 2018.

Satellite 3-h Latency 2-h Latency 1-h Latency No Latency Rate

AMSU-A N15 Ch6 142 142 142 142 —-

AMSU-A N18 Ch6 1466 1466 1466 1466 —-

AMSU-A N19 Ch6 0 107 107 120 100%

AMSU-A MetopA Ch6 2179 2182 2181 2182 —-

AMSU-A MetopB Ch8 2365 2624 2624 2624 9.9%

ATMS Ch11 508 508 1077 1077 52.8%

CrIS Ch96 1231 1231 2686 2686 54.2%

IASI MetopA Ch110 806 806 806 806 —-

IASI MetopB Ch110 1445 1594 1594 1594 9.3%

3. Experimental Designs for Impact Studies

3.1. Case Description

Two typical storm cases were selected in order to evaluate the data latency impact on the LSS. Stage
IV precipitation dataset from NCEP as well as GOES-16 water vapor channel brightness temperatures
(BTs) were used to detect the LSS case. Based on Stage IV and GOES-16 brightness temperatures,
one LSS case ran from 000 UTC on 24 June to 1800 UTC on 24 June, 2018 (Case I), and another LSS
case was from 0000 UTC on 25 June to 1200 UTC on 25 June 2018 (Case II). The 18-h accumulated
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precipitation for Case I is plotted in Figure 3a, and the 12-h accumulated precipitation for Case II is
plotted in Figure 3b. For Case I, the LSS started between Colorado and Kansas, and then moved in a
southeasterly direction to Oklahoma. The 18-h accumulated precipitation was greater than 100 mm
from northwest Kansas to southeast Oklahoma. For Case II, the LSS covered Colorado, Kansas, and
Oklahoma all together. The maximum 12-h accumulated precipitation was over 40 mm, and at very
few regions was the precipitation over 50 mm.
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Figure 3. The 18-h accumulated precipitation (unit: mm) from 0000 UTC 24 June to 1800 UTC 24 June,
2018 (Case I) (a), and the 12-h accumulated precipitation from 0000 UTC 25 June to 1200 UTC 25 June,
2018 (Case II) (b) based on Stage-IV observations.

3.2. Stage IV Dataset

The Stage IV dataset was used as the “truth” for verifying the precipitation forecast. The Stage IV
analysis was based on the multi-sensor hourly/6-h “Stage III” analyses (on local 4 km polar-stereographic
grids) produced by the 12 River Forecast Centers (RFCs) in CONUS [13]. NCEP mosaics the Stage
III into a national product as the Stage IV dataset. It can be found in hourly, 6-hourly, and 24-hourly
accumulated precipitation analyses. Furthermore, the NCEP Stage IV also includes the manual quality
control performed on the Stage III data at the RFCs [14]. The Stage IV data are very useful for studies
with high spatial resolution (4 km) data, and it is widely used for the study of quantitative precipitation
forecasts [15,16]. Note that the maps of precipitation are generated by NCEP using a mosaicking
technique that combines data from the 12 RFCs in the CONUS, which would bring bias to the data.
Based on [17], the biases exist in the algorithms used by the RFCs as well as the operational processing
at the radar site.

3.3. Data Assimilation System

The Developmental Testbed Center (DTC), supported the Community Gridpoint Statistical
Interpolation (GSI) system, was used as the data assimilation system, which has the capability
of assimilating nearly all of the existing observations including those from radiosondes, aircraft,
microwave and infrared sounders, and radar. It is primarily a 3-Dvar system, and also has the option
to be used as a hybrid data assimilation system [18]. The hybrid data assimilation in a GSI system is an
ensemble Kalman filter-variational hybrid data assimilation system. It was developed collaboratively
by NOAA, the National Aeronautics and Space Administration (NASA), and the National Center for
Atmospheric Research (NCAR) for operational use. DTC provided the data assimilation community
version along with the support for research study and some real-time models. Due to the limited
resources in generating the ensemble members for hybrid assimilation in regional models, the 3-Dvar
method was selected for use in this study. The satellite bias correction method uses the enhanced
bias correction method [19], which is updated at every time step. The background and observation
error covariance were from the North American Mesoscale Forecast System (NAM). The Community
Radiative Transfer Model (CRTM) was used to assimilate the satellite radiances [20–22]. The CRTM
version 2.2.3 coefficient was used for satellite simulation.
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Since the LSS Case I ran from 0000 UTC on 24 June to 1800 UTC on 24 June, 2018, the experiments
started 6-h earlier, which was 1800 UTC on 23 June to 1800 UTC on 24 June, 2018. The assimilation
time was 1800 UTC 23 June, and was followed by the forecasts from 0000 UTC on 24 June to 1800 UTC
on 24 June, 2018. The 3-h latency represents the data only available from 1500 UTC 23 June to 1800
UTC 23 June; the 2-h latency represents the data available from 1500 UTC 23 June to 1900 UTC 23
June; and the 1-h latency represents the data available from 1500 UTC 23 June to 2000 UTC 23 June
(Table 1). The experimental design is shown in Figure 4. Four experiments were conducted to simulate
the LSS case with 3-h, 2-h, 1-h, and no latency. The assimilated data included AMSU-A data onboard
NOAA-15, NOAA-18, NOAA-19, Metop-A and Metop-B; ATMS and CrIS data onboard SNPP; and
IASI data onboard Metop-A and Metop-B.
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3.4. WRF-ARW Regional NWP Model 

Figure 4. The flow chart of the assimilation and forecast experiments. The assimilation time was
1800 UTC 23 June. The green hours represent the available data time, and the blue represents the
latency time.

LSS Case II was from 0000 UTC on 25 June to 1200 UTC on 25 June, 2018, where the experiments
started from 0000 UTC 24 June, followed by a 36-h forecast. The 3-h latency represents the data from
2100 UTC 23 June to 0000 UTC 24 June; 2-h latency contains the data from 2100 UTC 23 June to 0100
UTC 24 June; 1-h latency contains the data from 2100 UTC 23 June to 0200 UTC 24 June; and no latency
contains the data from 2100 UTC 23 June to 0300 UTC 24 June. All the experimental designs and the
data assimilation schemes were the same as Case I.

3.4. WRF-ARW Regional NWP Model

The Advanced Research WRF (WRF-ARW) v 3.6.1 was used as the regional NWP model.
WRF-ARW was developed by NCAR and is broadly used in both research studies and regional
operational centers. The horizontal resolution of the regional model was 9 km and 3 km nested
domains. The vertical layers were 50 layers from the surface to 10 hPa. The calculation time step was
every 20 s. This model setting is an emulation of RAP/HRRR. The NCEP GDAS/FNL 0.25-degree data
were used as the initial and boundary conditions for the regional model simulation. The cumulus
schemes were not required for the WRF-ARW model since the horizontal resolutions of the models
were less than 10 km. The Thompson aerosol-aware microphysics scheme was used to simulate the
LSS precipitation. The RRTMG radiation scheme was used to calculate the longwave and shortwave
radiation. The Yonesei University Scheme (YUS) was used as the planetary boundary layer (PBL)
scheme. The pattern of the simulated rainfall was similar to the observations when using these physical
schemes, however, the simulated precipitation was stronger than the observations, which was due to
the 3 km high resolution of the inner, nested domain.
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4. Results and Analysis

4.1. Impact of Low Latency Satellite Sounder Observations on Precipitation Forecasts

For the LSS Case I, precipitation is one of the most important features for weather forecasting.
Figure 3a shows the observed precipitation from Stage IV from 0000 UTC on 24 June to 1800 UTC on 24
June, 2018. The maximum precipitation accumulation was greater than 100 mm during the 18-h period.
The rainfall belt occurred from the northwest toward the southeast in the domain area. The simulated
precipitation from the 3-h latency experiment is shown in Figure 5a. The main precipitation pattern
differed from the observations. The 3-h latency assimilation did not capture the rainfall belt, and the
pattern of simulated precipitation from the no latency experiment (Figure 5b) was more similar to the
observations than the pattern of simulated precipitation from the 3-h latency (Figure 5a). The rainfall
belt from the no latency experiment was observed from the northwest to the southeast. The maximum
accumulated precipitation was also over 100 mm during the 18-h forecast period.
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Figure 5. The 18-h accumulated precipitation (unit: mm) from 0000 UTC 24 June to 1800 UTC 24 June,
2018 based on forecast of 3-h latency (a) and the forecast of no latency (b).

To further evaluate the impact of latency impacts on the precipitation forecast, the equitable threat
score (ETS), probability of detection (POD), and false alarm ratio (FAR) [23,24] scores were calculated
for accumulated precipitation at six hour intervals. The resolution of the observed precipitation data
was 4 km × 4 km, which was coarser than the 3-km resolution of domain 2. The forecast precipitation
was interpolated to the observation grid points and then the ETS, POD, and FAR scores were calculated
for a box from 32◦N to 43◦N latitude and from 90◦W to 107◦W longitude. During the first 6-h forecast
(from 0000 UTC 24 to 0600 UTC 24 June), the ETS of 0.1 mm and 1 mm were similar for all of the
experiments (Figure 6). The ETS scores differed among the experiments for accumulated precipitation
values over 10 mm. From 0600 UTC on 24 June to 1200 UTC on 24 June, the ETS scores showed
significant differences among all of the experiments. The ETS of the no data latency yielded the highest
value in comparison to the ETS of the other experiments. In addition, the 3-h latency resulted in the
lowest ETS. This indicates that the data latency directly affects the precipitation simulation. When
there are data available in the assimilation window, the resulting precipitation forecast is more accurate.
The difference in the precipitation forecast was more obvious for the heavy rainfall periods. The ETS
scores were similar at 0.1 mm precipitation, but for accumulated precipitation over 5 mm, there were
larger differences between the ETS scores. Both the POD and FAR had a similar pattern to the ETS.
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Figure 6. ETS of the 6-h forecasts (a), 12-h forecasts (b) and 18-h forecasts (c) for the experiments of 3-h
latency (black), 2-h latency (blue), 1-h latency (red) and no latency (green), respectively.

4.2. Impact on T/Q/U/V Forecasts

In addition to evaluating the precipitation amounts, the forecast fields (T/Q/U/V) were also
compared with the radiosonde profiles. The radiosonde stations at 1800 UTC on 23 June and 0000 UTC
on 24 June, 2018 are shown in Figure 7 as examples. There were more radiosonde stations available at
1200 UTC and 000 UTC than at 0600 UTC and 1800 UTC. There were a total of 177 radiosonde stations
during the forecast time period. Since there are different levels for each observation at each station, the
total number of temperature data points was 8245, the number of moisture data points was 6226, and
the number of U and V wind data points were 11,433. All observations from the radiosonde stations
were compared with the forecast fields at the same time and same level.Sensors 2020, 20, 650 9 of 14 
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The root mean square errors (RMSEs) of the variables (T/Q/U/V) were calculated for all four
experiments (Table 3). The smallest RMSEs of each variable among the four experiments are shown
in red. The smallest RMSEs of temperature and U-wind were derived from the 1-h latency, and the
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smallest RMSEs of moisture and V-wind were derived from no latency, indicating that the forecast
fields of 1-h latency and no latency were the least affected by the observations. The large data latency
of the 3-h and 2-h latency conditions provided less data used for assimilation into the GSI system,
which makes the forecast fields worse than the results of 1-h latency and no latency. The results of
forecast fields (temperature (T), moisture (Q), and winds (U/V)) were consistent with the precipitation
forecasts that more data or low data latency can provide better overall forecast results.

Table 3. The RMSE of the T/Q/U/V between the radiosonde profiles and the forecast fields of the
four experiments.

RMSE 3-h Latency 2-h Latency 1-h Latency No Latency

T (K) 1.3999 1.3839 1.3824 1.3979

Q (%) 1.4219 1.4016 1.3902 1.3773

U (m/s) 3.4746 3.4808 3.4420 3.4737

V (m/s) 3.6657 3.6878 3.6541 3.6438

4.3. Overall Impact

Instead of showing the results from individual atmospheric fields, an overall evaluation strategy
was carried out. The purpose of this strategy was to use one single parameter to characterize the
overall impact for the LSS simulations. The RMSEs of temperature (T), moisture (Q), and winds (U/V)
compared with radiosondes (Table 3) were used for the calculation. In addition, the precipitation
scores (ETS/POD/FAR) were also calculated for the final single parameter calculation. To be consistent
with the RMSEs from T/Q/U/V where the lower values are better results, (1-ETS) and (1-POD), the
differences between one, and ETS/POD scores of 0.1 mm as the threshold are used. When combining
the different units for each parameter, a normalization process was used to ensure the sum of the
square equals 1.0 for each parameter.

Table 4 shows the normalized RMSE for all parameters for LSS Case I. Table 5 shows the normalized
RMSE using the same method for LSS Case II. The final nominalized RMSE was calculated using a
weighted average based on the approach used in the geostationary advanced IR sounder [25] and the
CubeSat sounder [26] impact studies:

• Temperature (T), 10%
• Moisture (Q), 10%
• U-wind (U), 10%
• V-wind (V), 10%
• 1-ETS, 20%
• 1-POD, 20%
• FAR, 20%

The precipitation scores were given relatively large weights because of their importance in the
LSS simulation. Atmospheric fields were calculated at the last analysis time (1800 UTC 23 June,
2018) and for every 6-h forecast (0000 UTC, 0600 UTC, 1200 UTC and 1800 UTC 24 June) for Case I.
The atmospheric fields were calculated at the last analysis time (0000 UTC 24 June 2018) and for every
6-h forecast (0600 UTC, 1200 UTC, 1800 UTC 24 June, 0000 UTC, 0600 UTC, and 1200 UTC June 2018)
for Case II. The precipitation scores were calculated for every 6-h accumulated rainfall measurement at
0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC on 24 June for Case I, and at 0000 UTC, 0600 UT, and
1200 UTC on 25 June for Case II.

Using the method described above, the final normalized RMSEs of the four groups of experiments
were calculated with a confidence interval of 95%. For Case I, comparing the four groups of experiments,
the improvement from the 3-h latency to the 2-h latency was about 2.3%, from the 3-h latency to the 1-h
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latency was about 2.9%, and from the 3-h latency to no-latency was about 3.9% (Figure 8). For Case II,
the improvement from the 3-h latency to the 2-h latency was about 2.38%, from the 3-h latency to the
1-h latency was about 3.42%, and from the 3-h latency to no-latency was about 4.99% (Figure 9). Based
on the two LSS cases, the no-latency experiment provided the most observations to the LSS simulation
in the assimilation window for both the analysis and forecast.

Table 4. The normalized RMSE (The Root Mean Square Errors) for T/Q/U/V and precipitation scores
for the four experiments of Case I.

RMSE 3-h Latency 2-h Latency 1-h Latency No Latency

T 0.5029 0.4975 0.4970 0.5025

Q 0.5086 0.5013 0.4973 0.4926

U 0.5010 0.5019 0.4963 0.5009

V 0.5004 0.5034 0.4988 0.4974

1-ETS 0.1 mm 0.5024 0.5007 0.5011 0.4958

1-POD 0.1 mm 0.5493 0.4951 0.4835 0.4683

FAR 0.1 mm 0.4989 0.5011 0.5027 0.4973

Table 5. The normalized RMSE for T/Q/U/V and precipitation scores for the four experiments of Case II.

RMSE 3-h Latency 2-h Latency 1-h Latency No Latency

T 0.5341 0.4928 0.4574 0.5125

Q 0.5389 0.4927 0.4809 0.4852

U 0.5512 0.4993 0.4682 0.4772

V 0.5375 0.496 0.4764 0.4881

1-ETS 0.1 mm 0.5027 0.5048 0.5055 0.4867

1-POD 0.1 mm 0.4765 0.5002 0.5239 0.4983

FAR 0.1 mm 0.5071 0.5106 0.5086 0.4726
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5. Summary

The forecast of LSS and other rapidly changing weather events depends on how frequently and
quickly the forecasts are updated. The low latency sounder data from satellites are very important
in improving the pre-convection atmospheric conditions in NWP based, short-range forecasts. Such
low latency data from polar orbiting satellites are available from direct broadcast (DB) sites, while
the low latency data from geostationary satellites are available from GRB. In this study, the impact
of low latency from sounders onboard polar orbiting satellites were demonstrated. Our findings
indicate that (1) data latency directly affects the amount of data that can be assimilated into an NWP
system and for data coverage, almost all types of satellite observations are increased from 3-h latency
to no latency; (2) low latency from polar orbiting satellites results in better forecasts for precipitation
and forecast fields (T/Q/U/V) of 1-h latency and no latency are much closer to the observations, and
these low latency LEO data can be obtained via DB sites; and (3) the final normalized RMSEs of
T/Q/U/V/1-ETS/1-POD/FAR indicate the following order in terms of better impact: no latency > 1-h
latency > 2-h latency > 3-h latency. As the no latency condition provides the most observations to the
assimilation system, it produced the best results for the LSS forecast.

Two typical LSS cases were demonstrated in this study and the impact of different latencies on
regional NWP-based forecasts were clearly distinguished, indicating that the forecasts are sensitive to
the amount of sounder data assimilated. The impact, however, is dependent on many other factors
including, but not limited to, the parent model used for the initial and boundary conditions for the
regional NWP model, the sounder observational characteristics (spatial and temporal resolutions,
spectral channels, observation errors, etc.), data assimilation system, and weather situations. It is worth
noting that the data assimilation technique is extremely important for low latency data assimilation:
more data can be assimilated with a 4DVAR system and a large assimilation window. Additionally,
a combination of an advanced satellite data assimilation system and the low latency data could
improve high impact weather forecasts. Furthermore, geostationary-based high temporal and spatial
resolution observations or derived products such as moisture and dynamic information are very
useful for improving tropical cyclone forecasts, especially the rapid scan based mesoscale atmospheric
motion vectors (AMVs) in the inner core region. Such information can be obtained via the GRB system.
It should be noted that GEO data from GRB have almost no latency; however, the processing time for
deriving the products (e.g., AMVs) becomes important for timely assimilation for rapid update of the
regional NWP model. In all circumstances, efficient data processing is critical to ensure low latency
from both LEO and GEO for these applications.
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The results showed that low latency can lead to an improved and positive impact on precipitation
and other forecasts, which further indicates the potential of applying LEO DB data in high regional
NWP for LSS forecasts.
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